Overlooked DNA shuffling drives deadly paediatric brain tumour

image

One of the deadliest forms of paediatric brain tumour, Group 3 medulloblastoma, is linked to a variety of large-scale DNA rearrangements which all have the same overall effect on specific genes located on different chromosomes. The finding, by scientists at the European Molecular Biology Laboratory (EMBL), the German Cancer Research Centre (DKFZ), both in Heidelberg, Germany, and Sanford-Burnham Medical Research Institute in San Diego, USA, is published online today in Nature.

  • To date, the only gene known to play an important role in Group 3 medulloblastoma was a gene called MYC, but that gene alone couldn't explain some of the unique characteristics of this particular type of medulloblastoma, which has a higher metastasis rate and overall poorer prognosis than other types of this childhood brain tumour. To tackle the question, Jan Korbel's group at EMBL and collaborators at DKFZ tried to identify new genes involved, taking advantage of the large number of medulloblastoma genome sequences now known.

"We were surprised to see that in addition to MYC there are two other major drivers of Group 3 medulloblastoma – two sister genes called GFI1B and GFI1," says Korbel. "Our findings could be relevant for research on other cancers, as we discovered that those genes had been activated in a way that cancer researchers don't usually look for in solid tumours."

Read More